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Kelvin-Helmholtz wave growth on cylindrical sheets 
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A first-order analysis of Kelvin-Helmholtz wave growth on cylindrical sheets is 
carried out. It is demonstrated that the growth rate of both symmetric and 
antisymmetric waves increases significantly with reduction of the radius of the 
core. 

A number of analytical studies have been made of Kelvin-Helmholtz wave 
growth on thin liquid sheets (Squire 1953; Hagerty & Shea 1955; Clark & 
Dombrowski 1972), but thus far these have been confined to flat interfaces. 
In  an important type of atomizer, the swirl spray nozzle, the liquid emerges in 
the form of a conical attenuating sheet. This system is a t  present mathematically 
intractable, but a study of the simpler case of a cylindrical sheet should provide 
an indication of the effect of lateral curvature on wave growth. To this end, a 
linear analysis is carried out and the result compared with that for the flat 
system treated by Squire. 

Recent studies (Crapper et al. 1973; Crapper, Donibrowski & Jepson 1975) 
have shown the viscosity of the gas phase to have a significant effect on wave 
growth. However, inviscid analyses provide a good description of the overall 
wave characteristics, and this approach is adopted here. We consider a cylindrical 
sheet with internal radius a and thickness h. In the undisturbed state the liquid 
in the sheet, of density pL, has velocity V,and the surrounding gas, of density 
pc ,  is a t  rest. For incompressible irrotational flow the motion is defined by the 
Laplace equation 

where i = 1 , 0  and 2 correspond to the three regions indicated in figure 1. 

surfaces may be taken respectively to be 

v2$i = 0, (1)  

Following the usual procedure, the displacements of the inner and outer 

yl = mexp[i(kx-wt)], qz = ePexp[i(kx-wt)], (2) 
and to satisfy (1), the velocity potentials in cylindrical polar form ( r ,  8, x) for 
the three regions are assumed to be 

(3) 
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i $1 = eR,(r) exp [ i (kx  - w t ) ] ,  

$,, = eR0(r) exp [ i (kx  - wt) ]  + Vx, 
$ z  = eR,(r) exp [ i ( k x -  wt)], 
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FIGURE 1. Flow system studied. 

where 
Rl = A,K,(kr), R, = AoKo(kr) +BoIo(kr), Rz = A2I0(kr) 

and 1, and KO are zero-order Bessel functions. 

the boundaries, 
Retaining terms in e only, (1)  is solved by applying the Bernoulli equation at  

where u = surface tension, and noting that the surface of the fluid moves with 
the fluid, 

at  r = a for i = 0, 2, 
a t  r = a + h  for i = 0, 1; 

-+ 8.11 V - - L  ar a$. = 0 
at ax ar 

the V term only appears when i = 0. 
Thus eliminating A,, A,, Bo and B1 and solving for a and p gives 
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FIGURE 3. Variation of optimum growth rate with radius of 
core for antisymmetric waves (V  = 1000 cm/s). 

For large ka and k(a + h) the quartic equation (7) factorizes into two quadratics, 
which are Squire’s equations for antisymmetric and symmetric waves on a flat 
sheet: 

kh pcw2 
pL( V k  - o ) ~  - tanh + - - vk2 ,  k (5) k (9) 

Equation (7 )  has been solved numerically for a range of values of the sheet 
velocity V ,  sheet thickness h and cylinder radius a. Typical resuIts for the growth 
rates of both symmetric and antisymmetric waves, and the corresponding wave 
velocities, are given in figures 2-4 for a sheet velocity of 1000 cmls and a range of 
sheet thicknesses and radii. Curves plotted on the basis of Squire’s analysis for 
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FIGURE 4. Wave velocities (I.’ = 1000 cm/s). -, h = cm; - - -, h = cm. 

flat sheets [(9) and (lo)] are included for comparison, although it should be 
noted that they coincide with those drawn for the larger values of a.  

It is seen (figures 2a, b )  that, for core radii greater than about 1 cm, the wave 
characteristics correspond to Squire’s solutions. However, a t  lower values, 
curvature has a marked influence on the growth rate and range of instability, 
both increasing with reduction of the radius. The effect on the growth rate is 
brought out more clearly in figure 3, which plots the optimum value vs. core 
radius for antisymmetric waves. Some significant differences between the two 
types of waves can however be observed. For example, figure 2 ( a )  (symmetric 
waves) shows the opt,imum frequency to increase with sheet thickness, while 
figure 2 ( b )  (antisymmetric waves) demonstrates the optimum value to be 
affected by both the radius and sheet thickness. 

Figure 4 shows that the velocities of symmetric waves are unaffected by sheet 
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curvature and thickness and that they move a t  the sheet velocity for all frequen- 
cies. Antisymmetric wave velocities, however, which are always less than that 
of the sheet, increase with increasing radius and diminishing thickness, although 
the differences become less marked with increasing frequency. 

The results of the analysis are interesting in that they could provide a further 
explanation for the observed shortness of conical sheets, produced from swirl 
spray nozzles, compared with flat sheets. It was suggested by Clark & Dombrowski 
that this could be due to relatively large disturbances produced in the air core. 
This work indicates that increased growth rates, particularly near the apex of 
the cone, are a contributory factor. 

One of the authors (G.A.D.P) is indebted to the University of Leeds for a 
maintenance grant. We should also like to acknowledge the help of Mr W. P. 
Jepson with the numerical work. 
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